The generator matrix 1 0 0 1 1 1 X 1 X^2+X 1 1 1 X^2 X^2+X X^2+X X^2 1 1 X^2+X 1 1 X^2+X 1 0 1 1 X^2 1 X 1 1 1 0 1 0 X 1 X^2+X X^2 1 1 1 X^2+X 1 0 1 X^2 0 X^2 1 0 X X 1 1 1 1 1 X X^2 1 1 1 1 1 1 1 1 X X^2 1 1 1 1 0 0 1 0 X^2 X^2+1 1 1 0 0 X^2 X^2+1 1 1 1 X^2+X X X X^2+X+1 1 X^2+X X+1 1 X 1 X^2+X+1 X+1 1 0 1 X+1 X^2+X X^2+1 1 X 1 1 0 1 X^2+X X X^2 X 1 X^2+X+1 X^2 X 1 X 1 X^2 1 X^2+X 0 X^2+1 1 1 X^2+X+1 X+1 1 1 1 X^2+1 X+1 X^2+X+1 X^2+1 1 X^2+X+1 X+1 1 1 X^2+X X X+1 X+1 1 0 0 1 X^2+X+1 X+1 X^2 X^2+1 X 1 1 X^2+1 X^2+X X X+1 1 1 X 1 X X^2 X+1 X^2 1 X^2+X+1 X 0 1 X^2+1 X^2+X+1 X^2+X X+1 0 X^2+1 X^2+X+1 X+1 1 X^2 0 1 X^2 X X^2+X X^2+X 0 1 X^2+1 X^2+X+1 X^2+X 0 X+1 X 1 1 X^2+X 1 X^2+X+1 X^2+X+1 X^2+1 X+1 X+1 X^2+1 X^2+X+1 X^2+X+1 X^2+1 1 X+1 X+1 1 1 1 X^2+1 X^2+1 X^2 0 X+1 generates a code of length 75 over Z2[X]/(X^3) who´s minimum homogenous weight is 72. Homogenous weight enumerator: w(x)=1x^0+63x^72+128x^73+88x^74+64x^75+48x^76+32x^77+40x^78+5x^80+32x^81+9x^88+2x^96 The gray image is a linear code over GF(2) with n=300, k=9 and d=144. This code was found by Heurico 1.16 in 0.144 seconds.